Geometry Lecture Notes

Contents

1	Affine and projective spaces			
	1.1	Affine spaces	2	
		1.1.1 Affine subspaces	2	
			3	
	1.2	Euclidean geometry	3	
	1.3	Projective spaces	4	
2	Curv	ves	4	
	2.1	Smooth and regular curves	4	
	2.2	Envelopes	4	
	2.3	•	5	
	2.4	Evolutes	6	
3	Surfaces 6			
	3.1	Ruled and revolution surfaces	6	
	3.2	Quadrics	7	
	3.3		7	
	3.4	Gaussian and mean curvature	8	
	3.5	Isometries	c	
	3.6	Geodesics	c	
	3.7	Normal and principal curvature	c	
	5.1	Normal and principal curvature	9	

1 Affine and projective spaces

1.1 Affine spaces

Definition Affine space

Let E be a vector space over a field \mathbb{K} , and \mathcal{E} a set. Then \mathcal{E} is an **affine space** if there exists a map

$$f: \mathcal{E} \times \mathcal{E} \to E$$
 $(A, B) \mapsto \overrightarrow{AB}$

such that:

- 1. for all $A, B \in \mathcal{E}$, the partial map $f(A, \cdot)$ is a bijection from \mathcal{E} to E.
- 2. for all $A, B, C \in \mathcal{E}$, we have $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Lemma

Let $\mathcal E$ be an affine space. Then we have for all $A,B\in\mathcal E$:

- 1. $\overrightarrow{AA} = 0$
- 2. $\overrightarrow{AB} = -\overrightarrow{BA}$
- 3. $f(\cdot, B)$ is a bijection from $\mathcal E$ to E

Definition Adding points and vectors

Let $A, B \in \mathcal{E}$ and $\vec{v} \in E$ such that $\vec{v} = \overrightarrow{AB}$. Then $A + \vec{v} = B$.

Proposition

The point B from the previous definition exists and is unique.

Proposition

Every vector space is also an affine space, where $\overrightarrow{AB} = \overrightarrow{A} - \overrightarrow{B}$.

Proposition Parallelogram rule

$$\overrightarrow{AB} = \overrightarrow{CD} \implies \overrightarrow{AC} = \overrightarrow{BD}$$

1.1.1 Affine subspaces

Definition Affine subspace

A subset \mathcal{F} of an affine space \mathcal{E} is an **affine subspace** if there exists a point $A \in \mathcal{F}$ such that

$$F = \{ \overrightarrow{AB}, B \in \mathcal{F} \}$$

is a vector subspace of E. The subspace \mathcal{F} is said to be **directed** by F.

Lemma

If there exists A such that the previous definition holds, then the definition holds for all A.

Proposition

Let $A \in \mathcal{E}$ and let F be a vector subspace of E.

Then there is a unique affine subspace of \mathcal{E} directed by F and passing through A.

Definition *Line, 2-plane*

Affine subspaces of dimension 1 are called **lines**, affine subspaces of dimension 2 are called **2-planes**. (note: dimension is understood as the dimension of the underlying vector space)

Definition Parallel subspaces

Two lines L_1, L_2 in an affine space \mathcal{E} are **parallel** if they have the same direction.

Similarly, two affine subspaces $\mathcal{F}_1, \mathcal{F}_2$ are parallel if they are directed by the same vector space.

Proposition

For any line L in an affine space \mathcal{E} and a point $A \notin L$ in \mathcal{E} , there is a unique line parallel to L passing through A.

1.1.2 Affine transformations

Definition Affine transformation

Let \mathcal{E} and \mathcal{F} be affine spaces directed by vector spaces E and F respectively.

A map $f: \mathcal{E} \to \mathcal{F}$ is an **affine transformation** if

there exists $A \in \mathcal{E}$ such that for all $B \in \mathcal{E}$, $\overrightarrow{AB} \mapsto \overrightarrow{f(AB)} = \overrightarrow{f(A)f(B)}$ is a linear map $E \to F$

Lemma

If there exists $A \in \mathcal{E}$ such that the previous definition holds, then it holds for all $A \in \mathcal{E}$.

Proposition

All affine transformations are of the form f(x) = T(x) + b, where T is a linear map and b a point.

Theorem Thales' theorem

Let $\mathcal{D}_1, \mathcal{D}_2$ be two lines in an affine space \mathcal{E} and d, d', d'' parallel lines, and let $A_1, A_1', A_1'', A_2, A_2', A_2''$ be their respective intersection points. Then

$$\frac{\overrightarrow{A_1}\overrightarrow{A_1''}}{\overrightarrow{A_1}\overrightarrow{A_1'}} = \frac{\overrightarrow{A_2}\overrightarrow{A_2''}}{\overrightarrow{A_2}\overrightarrow{A_2'}}$$

Conversely, if $B \in \mathcal{D}_1$ is such that

$$\frac{\overrightarrow{A_1B}}{\overrightarrow{A_1A_1'}} = \frac{\overrightarrow{A_2A_2''}}{\overrightarrow{A_2A_2'}}$$

then $B = A_1''$.

Theorem Fundamental theorem of affine geometry

Let \mathcal{E}, \mathcal{F} be affine spaces of dimension > 2.

If $\varphi: \mathcal{E} \to \mathcal{F}$ is a bijection such that for all triples (A,B,C) of points in \mathcal{E} the images $\varphi(A), \varphi(B), \varphi(C)$ are colinear (i.e. on the same line), then φ is an affine mapping, and moreover an isomorphism.

1.2 Euclidean geometry

Definition Euclidean geometry

Euclidean geometry is the affine geometry on \mathbb{R}^n , equipped with the following inner product:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

We denote the Euclidean space by $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$.

Definition Distance

In Euclidean space, we define the distance between points by

$$d(x,y) = \sqrt{\langle x - y, x - y \rangle}$$

Note

On the exam, there will be <u>fewer</u> questions about <u>Euclidean geometry</u>, compared to other topics. Reflections in circles and/or lines will <u>not</u> be on the exam.

1.3 Projective spaces

Definition Projective space

Let E be a finite-dimensional vector space. The **projective space** P(E) deduced from E is the set of all lines in E. The dimension of this space is $\dim E - 1$. We can denote $P(\mathbb{R}^n)$ by $\mathbb{R}P^{n-1}$.

Proposition

Every line in $P(\mathbb{R}^2)$ can be uniquely represented by a point on the half unit circle, or a point in $L \cup \{\infty\}$. Here, L is any horizontal line not intersecting the origin, and L is isomorphic to \mathbb{R} .

2 Curves

Examples of curves

Brachistochrone:
$$\begin{cases} x = r(\varphi - \sin \varphi) + c \\ y = r(1 - \cos \phi) \end{cases}$$

Bernoulli's lemniscate:
$$\begin{cases} x = \frac{t}{1+t^4} \cdot d \\ y = \frac{t^3}{1+t^4} \cdot d \end{cases}$$

2.1 Smooth and regular curves

Definition Curve

A curve is a continuous map $\gamma:[a,b]\to\mathbb{R}^n$.

A curve is called **smooth** if each component of the curve is infinitely differentiable.

A curve is called **regular** if $\gamma'(t) \neq 0$ for all $t \in [a, b]$.

Definition Singular point

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a smooth curve. $t\in[a,b]$ is a singular point if $\gamma'(t)=0$.

Note

Singular points are often isolated, but this need not be so, and cusps are not the only examples.

2.2 Envelopes

Definition Tangent line

Let \mathbb{R}^2 be an affine and Euclidean space. The **tangent line** to f at (x_0, y_0) is:

$$y = y_0 + f'(x_0)(x - x_0)$$

Definition *Envelope*

Let $\{D_t\}$ be a family of lines in \mathbb{R}^2 . (not necessarily through the origin)

Then the **envelope** to D_t is a curve $\gamma:[a,b]\to\mathbb{R}^2$ such that for all $t\in[a,b]$:

- $\gamma'(t)$ is parallel to D_t
- $\gamma(t) \in D_t$

Computation of envelopes

Let $\{D_t\}$ be a family of lines defined by u(t)x + v(t)y + w(t) = 0.

Then we can compute the envelope $\gamma = (x(t), y(t))$ by solving the following linear system:

$$\begin{cases} u(t)x(t) + v(t)y(t) + w(t) = 0 \\ u'(t)x(t) + v'(t)y(t) + w'(t) = 0 \end{cases}$$

We can write this as a matrix-vector equation:

$$\underbrace{\begin{bmatrix} u(t) & v(t) \\ u'(t) & v'(t) \end{bmatrix}}_{A} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} + \begin{bmatrix} w(t) \\ w'(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This equation can be solved by inverting A. There exists a unique envelope if $\det A \neq 0$ for all $t \in [a,b]$. Solving the matrix-vector equation will lead to the following expressions for x and y:

$$x = -\frac{wv' - w'v}{uv' - vu'} \qquad y = -\frac{w'u - wu'}{uv' - vu'}$$

2.3 Curvature

Definition Arc length

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a C^1 -smooth curve. The arc-length parameter on γ is defined as

$$s = s(t) := \int_a^t \left| \frac{\mathrm{d}\gamma}{\mathrm{d}t} \right| \, \mathrm{d}t$$

Proposition

Assume that γ is a smooth and regular curve. Then

- s = s(t) is a smooth, strictly monotone function of t.
- The inverse t(s) of s(t) is also smooth and strictly monotone.
- $|\gamma'(s)| = 1$

Definition Unit tangent and normal vector

The unit tangent vector $\tau(s)$ is equal to the derivative of the arc length parametrization $\gamma(s)$.

The **unit normal vector** n(s) is chosen such that (τ, n) is a positively oriented orthonormal basis.

Definition Curvature

For a regular curve $\gamma:[a,b]\to\mathbb{R}^3$, let s be its arc length parameter and let n(s) be the normal vector to γ at s. If

$$\tau'(s) = \kappa(s) \cdot n(s)$$

then $\kappa(s)$ is the **curvature** of γ at s.

Theorem Frenet formulas in \mathbb{R}^2

$$\begin{bmatrix} \tau'(s) \\ n'(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa(s) \\ -\kappa(s) & 0 \end{bmatrix} \begin{bmatrix} \tau(s) \\ n(s) \end{bmatrix}$$

Definition Curvature radius and center

The curvature radius $\rho(s)$ is defined by

$$\rho(s) = \frac{1}{\kappa(s)}$$

and the **curvature center** C(s) is defined by

$$C(s) = \gamma(s) + \rho(s) \cdot n(s)$$

The **osculating circle** at t is the circle at C(s) with radius $|\rho(s)|$.

2.4 Evolutes

Definition Evolute

The **evolute** of a regular C^2 curve $\gamma:[a,b]\to\mathbb{R}^2$ is equal to the set of curvature centers of γ .

Proposition

If D(t) is the family of normal lines to a curve γ , then the envelope of D(t) is the evolute of γ .

Definition Wavefronts

Let γ be a curve with unit normal n(t). Wavefronts of γ are parallel curves of the form

$$\gamma_a(t) = \gamma(t) + an(t)$$

Theorem Huygens' principle

 $\gamma_a(t)$ is singular (i.e. $\frac{\mathrm{d}}{\mathrm{d}t}\gamma_a(t)=0)$ at points where $\rho(t)=a.$

The set of all of these singular points (at all a) is the evolute of γ .

3 Surfaces

Definition Surface

A surface $S \subset \mathbb{R}^n$ is defined by a set of parametric equations:

$$\begin{cases} x_1 = f_1(u_1, \dots, u_{n-1}) \\ \vdots \\ x_n = f_n(u_1, \dots, u_{n-1}) \end{cases}$$

where f is C^1 and (usually) its Jacobian is surjective for all $(u_1, \ldots, u_{n-1}) \in \mathbb{R}^{n-1}$.

A surface can also be defined by an implicit equation:

$$S = \{(x_1, \dots, x_n) : f(x_1, \dots, x_n) = 0\}$$

where f is C^1 and its gradient is nowhere zero.

3.1 Ruled and revolution surfaces

Definition Ruled surface

Let γ be a curve and w(p) a vector defined at each point p on γ . Let D_p denote the line going through each point $p \in \gamma([a,b])$, directed by w(p). The union of all lines D_p is a **ruled surface**.

Examples of ruled surfaces

A **cylinder** is a ruled surface where the vector w(p) is constant.

A **cone** is a ruled surface where $w(p) = \vec{Op}$ for some fixed point O.

Definition Surface of revolution

Consider a plane curve C and make it turn about a line D of its plane.

The line D is called the axis of revolution, and the surface that is produced this way is a surface of revolution.

Examples of surfaces of revolution

If the curve C is a straight line, the surface obtained is a **cylinder** if the lines C and D are parallel, a plane if they are perpendicular, and a cone otherwise.

If the curve C is a circle, the surface obtained is a **sphere** if the line D is a diameter of C, or a torus if D and C do not intersect.

Möbius strip

$$\gamma(r,\phi) = (\cos\phi + r\cos(\phi/2), \sin\phi, t\sin(\phi/2))$$
 $r \in [-1,1], \phi \in [0,2\pi]$

3.2 Quadrics

Definition Quadric

A **quadric** in \mathbb{R}^n is the locus of a degree 2 polynomial:

$$C = \{x \in \mathbb{R}^n \mid p(x) = 0\} \qquad p(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j + \sum_{i=1}^n b_i x_i + c$$

Definition Classification of quadrics

Regular curves in dimension n=2: Regular surfaces in dimension n = 3:

Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Hyperbola: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Parabola: $y = \frac{x^2}{a}$ 1-sheeted hyperboloid: $\frac{x^2}{a_2^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ 2-sheeted hyperboloid: $\frac{x^2}{a_2^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Elliptic paraboloid: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

Singular sets in dimension n=2:

Hyperbolic paraboloid: $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$

Singular surfaces in dimension n=3: Elliptic cylinder: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ Hyperbolic cylinder: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Cylinder over 1-cone: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ Parabolic cylinder: $y = \frac{x^2}{a}$ Other quadrics are the empty set a point of the system.

Other quadrics are the empty set, a point, a line, a plane, a pair of points, a pair of lines, and a pair of planes. For images of these quadrics, see Week 3, Lecture 7 on Brightspace.

3.3 Tangent spaces and fundamental forms

Definition Tangent space

Let $M \subset \mathbb{R}^n$ be a regular surface.

Then the tangent space T_pM of M at a point $p \in M$ can be described in one of the following equivalent ways:

- 1. Let $\vec{n}(p)$ be a normal vector to M at p. Then T_pM is the plane in \mathbb{R}^n orthogonal to $\vec{n}(p)$ and passing through p.

$$T_pM=\{\gamma'(0)\mid \gamma:(-\varepsilon,\varepsilon)\to M\subset\mathbb{R}^n \text{ is a } C^1\text{-smooth curve with }\gamma(0)=p\}$$

Definition Gauss map

2.

Let M be a surface in \mathbb{R}^3 and S^2 the unit sphere of \mathbb{R}^3 .

The map $ec{n}:M o S^2$, mapping a point to the unit normal vector at that point, is called the **Gauss map**.

Proposition

Let $M\subset\mathbb{R}^3$ be a surface and S^2 the unit sphere. Then

$$T_p M \cong T_{\vec{n}(p)} S^2$$

Definition Fundamental forms

Let $M \subset \mathbb{R}^3$ be a surface, $p \in M$ a point, and X, Y vectors in T_pM .

The first fundamental form, denoted $I_p(X,Y)$, is the restriction of the Euclidean inner product $\langle X,Y\rangle$ to T_pM .

The first fundamental form is also called the Riemannian metric.

The second fundamental form is defined by

$$II_p(X,Y) = -\langle d\vec{n}(x), Y \rangle = -I_p(d\vec{n}(x), Y)$$

Fundamental forms (matrix form)

Let $\vec{r}_1(p), \dots, \vec{r}_{n-1}(p)$ be the natural basis of a surface M. The entries of the **matrix of the second fundamental** form are then given by

$$Q_{ij}(p) = II(\vec{r}_i(p), \vec{r}_j(p)) = \left\langle \frac{\partial^2}{\partial u_i \partial u_j} \vec{r}(p), \vec{r}(p) \right\rangle$$

Similarly, we have the matrix of the first fundamental form:

$$G_{ij}(p) = \langle \vec{r}_i(p), \vec{r}_j(p) \rangle$$

Proposition

The matrix of the second fundamental form is symmetric.

3.4 Gaussian and mean curvature

Definition Gaussian and mean curvature

Let $M \subset \mathbb{R}^3$ be a surface and $p \in M$ a point.

We define the **Gaussian curvature** at p by

$$k(p) = \det d\vec{n}(p)$$

and the **mean curvature** at p by

$$H(p) = \operatorname{tr} d\vec{n}(p)$$

Proposition

The Gaussian curvature $\kappa(p)$ satisfies

$$\kappa(p) = (-1)^{n-1} \frac{\det(Q_{ij}(p))}{\det(G_{ij}(p))}$$

Theorem Gauss' Theorema Egregium

The Gaussian curvature only depends on the Riemannian metric

Proposition

- 1. A plane in \mathbb{R}^3 has Gaussian and mean curvature 0.
- 2. A cylinder and cone have Gaussian curvature 0.
- 3. The disk S_R^2 has constant Gaussian and mean curvature.
- 4. Helicoids and catenoids have negative Gaussian curvature and 0 mean curvature. (therefore they are minimal surfaces)

3.5 Isometries

Definition Pullback

$$f^*(G_N) = G_M \iff G_M(X, Y) = G_N(df(X), df(Y))$$

Definition Local isometry

Let $M,N\subset\mathbb{R}^3$ be surfaces. A **local isometry** is a smooth map $f:M\to N$ such that

$$f^*(G_N) = G_M$$

where G_M, G_N are the Riemannian metrics on M, N respectively, and $X, Y \in T_pM$.

Proposition

The Gaussian curvature is invariant under local isometries f:

$$\kappa_N \circ f \equiv \kappa_M$$

Definition Classification of singular points

Let $M \subset \mathbb{R}^3$ be a regular surface.

By applying an isometry, we can assume that for a given point $p \in M$, $\vec{n}(p) = (0, 0, 1)$.

If M around p is given by z(x,y), with $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 0$, then the point p is

- elliptic if $\det[D^2z(p)] > 0$
- hyperbolic if $\det[D^2z(p)] < 0$
- parabolic if $det[D^2z(p)] = 0$ and $D^2z(p) \neq 0$
- planar if $D^2z(p)=0$

Proposition

Let κ_p denote the Gaussian curvature at a point p.

$$\kappa_p > 0 \implies p \text{ elliptic} \qquad \kappa_p < 0 \implies p \text{ hyperbolic}$$

3.6 Geodesics

Definition Riemannian distance

Let g denote the Riemannian metric on $M \subset \mathbb{R}^3$. Then the **Riemannian distance** between $p, q \in M$ is

$$d(p,q) = \inf_{\mathcal{L}} \int_{t_1}^{t_2} \sqrt{g_{\gamma(t)}(\dot{\gamma}(t),\dot{\gamma}(t))} \,\mathrm{d}t \quad \text{where} \quad \mathcal{L} = \{C^1\text{-smooth curves on } M \text{ such that } \gamma(t_1) = p, \gamma(t_2) = q\}$$

Definition Geodesic

A **geodesic** on $M \subset \mathbb{R}^3$ is a smooth curve $\gamma: I \to M$ parametrized by a constant multiple of arc-length, that locally realizes the distance function.

Proposition

Straight lines are geodesics of the Euclidean space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$.

3.7 Normal and principal curvature

Definition Normal curvature

Let $M \subset \mathbb{R}^3$ be a surface, let $X \in T_pM$ and let Π be the 2-plane in \mathbb{R}^n spanned by the vectors X and $\vec{n}(p)$. The curvature K_x of the plane curve $\gamma = \Pi \cap M$ is called the **normal curvature** of M in the direction X.

Proposition

$$K_X = II_p(X/||X||, X/||X||)$$

Definition Principal curvature

Let (e_1, \dots, e_{n-1}) be an orthonormal basis of T_pM such that the second fundamental form $Q_{ij}(p) = II_p(e_i, e_j)$ is diagonal. The diagonal entries K_{e_i} are called the **principal curvatures**.

Theorem (Euler)

Let $M \subset \mathbb{R}^3$ be a regular surface. Then the normal curvature can be expressed in terms of the principal curvatures:

$$K_X = \cos^2 \theta K_{e_1} + \sin^2 \theta K_{e_2}$$
 $X = (r \cos \theta, r \sin \theta)$

Index

(Euler), 10 Hyperbolic paraboloid, 7 1-sheeted hyperboloid, 7 implicit equation, 6 2-planes, 2 2-sheeted hyperboloid, 7 lines, 2 local isometry, 9 affine space, 2 affine subspace, 2 matrix of the first fundamental form, 8 affine transformation, 3 matrix of the second fundamental form, 8 arc-length parameter, 5 mean curvature, 8 axis of revolution, 7 normal curvature, 9 Bernoulli's lemniscate, 4 Brachistochrone, 4 osculating circle, 6 Cone, 7 Parabola, 7 cone, 6, 7 parabolic, 9 curvature, 5 Parabolic cylinder, 7 curvature center, 6 parallel, 2 curvature radius, 6 Parallelogram rule, 2 cylinder, 6, 7 planar, 9 Cylinder over 1-cone, 7 plane, 7 principal curvatures, 10 directed. 2 projective space, 4 distance, 3 quadric, 7 Ellipse, 7 Ellipsoid, 7 regular, 4 elliptic, 9 Riemannian distance, 9 Elliptic cylinder, 7 Riemannian metric, 8 Elliptic paraboloid, 7 ruled surface, 6 envelope, 4 Euclidean geometry, 3 second fundamental form, 8 evolute, 6 singular point, 4 smooth, 4 first fundamental form, 8 sphere, 7 Frenet formulas in \mathbb{R}^2 , 5 surface, 6 Fundamental theorem of affine geometry, 3 surface of revolution, 7 Gauss map, 7 tangent line, 4 Gauss' Theorema Egregium, 8 tangent space, 7 Gaussian curvature, 8 Thales' theorem, 3 geodesic, 9 torus, 7 Huygens' principle, 6 unit normal vector, 5 Hyperbola, 7 unit tangent vector, 5 hyperbolic, 9 Wavefronts, 6 Hyperbolic cylinder, 7